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Abstract
The imbalanced superfluid state of spin-1/2 fermions with s-wave pairing is numerically
studied by solving the Bogoliubov–de Gennes equation at zero temperature in an annular disk
geometry with narrow radial width. Two distinct types of systems are considered. The first case
may be relevant to heavy fermion superconductors, where magnetic field causes spin imbalance
via Zeeman interaction and the system is studied in a grand canonical ensemble. As the
magnetic field increases, the system is transformed from the uniform superfluid state to the
Fulde–Ferrell–Larkin–Ovchinnikov state, and finally to the spin polarized normal state. The
second case may be relevant to cold fermionic systems, where the number of fermions of each
species is fixed as in a canonical ensemble. In this case, the ground state depends on the pairing
strength. For weak pairing, the order parameter exhibits a periodic domain wall lattice pattern
with a localized spin distribution at low spin imbalance, and a sinusoidally modulated pattern
with extended spin distribution at high spin imbalance. For strong pairing, the phase separation
between the superfluid state and polarized normal state is found to be preferable, while the
increase of spin imbalance simply changes the ratio between them.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In conventional Bardeen–Cooper–Schrieffer (BCS) theory, the
normal state has a Fermi surface common to both spin-up
and spin-down electrons and the Cooper pair has zero total
momentum. More than 40 years ago, Fulde and Ferrell
(FF) [1] and Larkin and Ovchinnikov (LO) [2] independently
proposed the pairing mechanism for the mismatched Fermi
surfaces due to the spin imbalance. In the FF state, a spin-
up electron with momentum �k is bounded with a spin-down
electron with momentum −�k + �q; thereby the Cooper pair
has a net momentum �q which is determined by the imbalance
between two Fermi surfaces. Therefore the order parameter is
characterized by a single momentum �q , which can be written as
�(�r) = �0ei�q·�r with a uniform magnitude �0. If considering
the composition of two momenta, �q and −�q, one gets the

LO state where the order parameter is real with its magnitude
oscillating periodically in space.

In condensed matter physics, the spin imbalance can be
generated by applied magnetic fields. However, the condition
for the FFLO state to be observed is quite stringent on
the superconducting materials. Roughly speaking, there are
three requirements: (i) low Tc, so that the magnetic field
needed to imbalance the spin population is accessible; (ii)
the orbital effect of the magnetic field is weak enough to
avoid pair breaking before the Zeeman splitting takes effect;
(iii) a clean limit, i.e. the mean free path of an electron
should be much longer than the correlation length, since
the FFLO state is easily destroyed by impurities. Some
heavy fermion superconductors are good candidates to fulfill
these requirements (for a review see [3]). There have been
recent indications that CeCoIn5 indeed exhibits the FFLO
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state [4–9]. That compound is a quasi-two-dimensional heavy
fermion superconductor with a d-wave pairing. In the cold
fermionic atom system with different hyperfine spins, the
spin population imbalance between different hyperfine spins
can be easily controlled by applying a radio frequency field.
Recently the imbalanced superfluid state has been realized
in these cold neutral atom systems [10–14], and the possible
spatially modulated superfluid phases in these systems have
been studied in [15, 16]. It is noted that the particle number of
different species may be controlled directly in systems like cold
atoms, and in superconductors the spin imbalance is generated
by the external magnetic fields, which may correspond to two
different thermodynamic conditions.

In a recent theoretical study [17] it was found that
in the harmonically trapped polarized fermionic atoms in a
two-dimensional (2D) optical lattice the insulating core is
surrounded by a superfluid shell at high atomic densities
with the pairing parameter modulated in the circumferential
direction. Since some of the important physics may be
explained by the quasi-one-dimensional (quasi-1D) shell, it is
thus interesting to study the FFLO further in more detail in a
quasi-1D system. The possible angular FFLO state in a toroidal
trap has also been investigated in a very recent study [18].
In the present paper, we consider a quasi-1D annular disk
with narrow enough radial width so that the radial modulation
of the order parameter might result in quite a large radial
gradient of order parameter which increases the system energy
considerably according to the Ginzburg–Landau (GL) theory.
Therefore the oscillation of pairing amplitude is suppressed
in a radial direction, and restricted only in the circumferential
direction. In a large 2D system, the order parameter oscillation
has more freedom and can occur in arbitrary directions. In
the presence of inhomogeneity the modulation direction may
vary in space, which leads to an irregular pattern of the order
parameter. Therefore it may be easier to observe regular
oscillations of the pairing amplitude in a quasi-1D system than
in the 2D film.

In this paper we consider two distinct systems. The first
one may be relevant to heavy fermion superconductors, where
the electron spins interact with an external magnetic field via
the Zeeman coupling. The second system may be related
to cold fermionic atoms, where the number of fermions of
each spin is fixed. We employ a grand canonical ensemble
to study the first system and a canonical ensemble to study the
second system. We solve the Bogoliubov–de Gennes (BdG)
equation numerically at zero temperature for the above quasi-
1D systems. Our main results are summarized below. In the
first case, as the magnetic field increases, the ground state is
transformed from a uniform superfluid state to the sinusoidally
modulated LO state, and then to a spin polarized normal
state. In the second case, the ground state depends on the
pairing strength. For weak interactions, the order parameter
exhibits a periodic domain wall lattice pattern with a localized
spin distribution for low spin imbalance, and a sinusoidally
modulated pattern with extended spin distribution for high
spin imbalance. For strong interactions, the phase separation
between the superfluid state and the polarized normal state is
found to be more preferable, while increase in spin imbalance

simply extends the spatial region of the normal state. The
paper is organized as follows. In section 2, we study the exact
1D case. In section 3, we present our results for annular disk
geometry. The conclusion is given in section 4.

2. Imbalanced superfluid state in a one-dimensional
ring

2.1. One-dimensional BdG equation

Before exploring the properties of an imbalanced superfluid in
the annular disk geometry, we first consider a 1D ring, which
may be viewed as the limiting case where the disk width is
so narrow that only one radial mode is relevant. This case
has been studied by a number of authors. In the mean field
(MF) level, a rigorous analysis for the 1D BdG equation is
given in [19] in the presence of a magnetic field. In terms
of 1D Luttinger liquid theory the imbalanced superconducting
state is also elucidated by Yang [20], and very recently the
density matrix renormalization group algorithms have been
implemented in the 1D negative-U Hubbard model to explore
the FFLO state in [21–24]. The cold fermionic gases with
attractive interaction and population imbalance are studied
theoretically in [25] and [26].

In this subsection, we follow the MF treatment to give a
brief description of the 1D imbalanced superfluid state. We
consider a canonical ensemble and fix the number of fermions
of different species. Although only quasi-long range order
may exist in a 1D system, the MF approach presented in this
section is helpful to understand the imbalanced superfluid in
2D annular disk geometry shown in later sections.

The mean field Hamiltonian for a 1D interacting system
reads

Ĥ =
∫

dx

[∑
α

ψ̂†
α(x)

(
− h̄2∂2

x

2m

)
ψ̂α(x)

+
(
�(x)ψ̂†

↑(x)ψ̂
†
↓(x)+ h.c.

)
− |�(x)|2

g

]

−
∑
α

μα

[∫
dxψ̂†

α(x)ψ̂α(x)− Nα

]

�(x) = g
〈
ψ̂↓(x)ψ̂↑(x)

〉
. (1)

ψ̂α(x) is the fermion annihilation field at position x with spin
index α, �(x) is the fermion pairing field, m is the mass of the
particle, and g < 0 is the attractive interaction strength. μα are
the Lagrangian multipliers or the chemical potentials, which
are used to fix the number of fermions of different spins at N↑
and N↓ , respectively.

Equation (1) has a similar form to the well known Su–
Schrieffer–Heeger (SSH) model [27] for polyacetylene, which
describes a 1D electron system coupled to phonons. In this
system, when the phonon fields are condensed in opposite
phases at the two ends of the 1D string, there are possible
soliton excitations with zero energy in the fermion spectrum.
The soliton excitations are also possible in the 1D superfluid
Hamiltonian equation (1), where the MF pairing parameter
�(x) can mimic the phonon field in the SSH model, which
is shown briefly below. More details can be found in [19]

2



J. Phys.: Condens. Matter 21 (2009) 355701 F Ye et al

for example. For simplicity we take μ↑ = μ↓ = μ, which
determines the Fermi momentum kF = √

2mμ/h̄. The low
energy physics is described by quasiparticles around the two
Fermi points ±kF, i.e. the following decomposition is allowed:

ψ̂σ (x) ∼ eikF x R̂σ (x)+ e−ikF x L̂σ (x) (2)

with left and right movers defined as

R̂σ (x) =
∑

−�<k<�

ψ̂σ (k + kF)
eikx

√
L

L̂σ (x) =
∑

−�<k<�

ψ̂σ (k − kF)
eikx

√
L
.

(3)

� is a suitable momentum cutoff. These quasiparticle
operators satisfy the standard anti-commutation relations, i.e.

{R̂σ , R̂†
σ ′ } = {L̂σ , L̂†

σ ′ } = δσ,σ ′

and all the other anti-commutators are zero. Substituting
equation (2) into equation (1), and neglecting the fast
oscillation terms (∝ exp(±2ikFx)), one obtains the following
two Hamiltonians to the linear order of k:

Ĥ1 = h̄vF

∫
dx : R̂†

↑(−i∂x)R̂↑ : − : L̂†
↓(−i∂x)L̂↓ :

+
∫

dx�(x)(R̂†
↑ L̂†

↓ + L̂↓ R̂↑)

Ĥ2 = h̄vF

∫
dx : R̂†

↓(−i∂x)R̂↓ : − : L̂†
↑(−i∂x)L̂↑ :

+
∫

dx�(x)(L̂†
↑ R̂†

↓ + R̂↓ L̂↑).

(4)

Here : A : denotes normal ordering of A and vF means the
positive Fermi velocity. In the following h̄vF is taken as unity.
Ĥ1 and Ĥ2 are commutative with each other, and are connected
through the gap equation

�(x) = g
〈
R↓L↑ + L↓ R↑

〉
. (5)

The order parameter �(x) is assumed to be real. Equation (5)
shows that the pairing takes place either between L̂↑ and
R̂↓, or between L̂↓ and R̂↑. Actually, 〈R↓ L↑〉 = 〈L↓ R↑〉
by symmetry. Formally, one may have Ĥ ∼ Ĥ1 + Ĥ2 −∫

dx |�(x)|2/g, but it is emphasized that Ĥ1,2 only describes
the low energy excitations near the Fermi surface.

Let us consider only H1 with a twisted �(x),
i.e. �(−∞) = −�(∞) = �0. As shown by Jackiw and
Rebbi [28], there is at least one zero mode γ̂0↑ in the middle of
the gap, which is localized in space and reads

γ̂0↑ ∝
∫

dx F(x)[R̂↑(x)− iL̂†
↓(x)]

F(x) ∝ exp

[∫ x

0
dx ′�(x ′)

]
. (6)

It is easy to verify the commutation relation [γ̂0↑, Ĥ1] =
0. Besides this localized zero mode, we also have other
quasiparticle excitations γ̂nα in the continuum region, where

n and α are the energy level and spin indices, respectively.
Assuming all of them constitute a complete representation
of the Hamiltonian H1, the lowest energy states are doubly
degenerate in the presence of an order parameter with a kink
pattern, which is the spinless vacuum of the quasiparticles γ̂nα

together with the zero mode γ̂0↑ being either filled or empty.
Similar analysis is also valid for the H2 branch, for which one
can find that the zero mode has the form

γ̂0↓ ∝
∫

dx F(x)[R̂↓(x)+ iL̂†
↑(x)]

which satisfies [γ0↓, H2] = 0.
In terms of R̂σ and L̂σ , the total particle number N̂ and

total spin operator Ŝ can be written as

N̂ = N̂↑ + N̂↓, Ŝ = N̂↑ − N̂↓

N̂σ =
∫

dx[: R̂†
σ R̂σ : + : L̂†

σ L̂σ :],

where the fast oscillating terms are neglected. Note that the
quasiparticle operators R̂σ and L̂σ can only describe the low
energy physics, hence the operator N̂σ with normal ordering
only measures the particle number relative to the Fermi surface.
Obviously, unlike the SSH model [27] and the Jackiw–Rebbi
model [28], the charge conservation is broken in the BCS
theory, and therefore one cannot tell how many charges the
soliton can carry. Despite this fact, the total spin is still a
conserved quantity in our MF treatment, therefore each zero
mode may carry a half spin as an analogue to the half charge
investigated in [27, 28]. But in practice only one spin can be
observed at the kink of �(x), since there are two branches of
fermions (H1 and H2). To observe the half spin, one must
get rid of the fermion doubling problem. Nevertheless, this
provides a mechanism to accommodate excess spins with zero
energy. The total energy of the soliton measured relative to the
uniform BCS state is computed to be 2�0/π [29, 30], which is
less than the superfluid gap.

2.2. From soliton lattice-like LO state to sinusoidally varying
LO state

For equally populated species N↑ = N↓ , the lowest energy
state is obviously the BCS state with a uniform pairing gap.
If one spin is flipped from downward to upward, i.e. N↑ + 1
up spin and N↓ − 1 down spin, a soliton–anti-soliton pair
is developed to store these two excess spins. We define the
spin imbalance n to be (N↑ − N↓)/2 for spin 1/2 particle. A
typical soliton–anti-soliton pair is plotted in figure 1(a), which
is obtained by numerically solving equation (1) in a ring, where
we use the angle θ = 2πx/L as the coordinate. Due to
the periodic boundary condition, a single soliton cannot exist
freely so that it must co-exist with an anti-soliton as a pair with
the same width ξ . We call these soliton states with each spin
per soliton (anti-soliton) an ideal soliton state. Note that since
the order parameter is real, this state is also a kind of LO state.
Actually, all the self-consistent solutions shown in this paper
have real order parameters which minimize the energy, and
therefore they are LO states. In the following sections, we omit
‘LO’ for the sake of brevity.
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Figure 1. Angle distribution of the pairing order parameter in an
ideal soliton state. The order parameter is measured in units of �0

which is the value of order parameter in the uniform state. From top
to bottom, total spin imbalance is 1, 6 and 14. Open symbols:
numerical results; solid lines: fitting function �̃ tanh(cos nθ/ξ̃) with
two parameters �̃ and ξ̃ .

With the increase of the flipped spins, more soliton–anti-
soliton pairs are generated. Thus we get the soliton lattice state
with n pairs of solitons and anti-solitons as long as the system
is in the dilute limit by which we mean nξ � 2π , here the
soliton width ξ is measured in unit of the angle. In the dilute
limit, the solitons are well separated from each other, which has
two consequences: (i) all the midgap states have zero energy;
and (ii) each soliton or anti-soliton carries exactly one localized
spin. According to these two properties, we distinguish the
soliton lattice state from the sinusoidally modulated state,
where the spin imbalance n is too large to satisfy nξ < 2π and
solitons overlap considerably with each other. Then the energy
spectrum of the midgap states has a dispersion described by
the Bloch theorem for a periodic lattice. Such a scenario
from soliton lattice to sinusoidally varying state has also been
addressed in [31] from the viewpoint of GL theory. The
pairing parameter for both states can be described perfectly
by the fitting function4 �̃ tanh(cos nθ/ξ̃ ) with �̃ and ξ̃ to be
determined, which is shown in figure 1.

We now introduce two spin distribution functions, local
spin distribution SL (θ) = 1

2 〈ψ̂†
↑(θ)ψ̂↑(θ) − ψ̂

†
↓(θ)ψ̂↓(θ)〉 as

well as integrated spin distribution SI (θ),

SI (θ) =
∫ θ

0
SL (θ

′) dθ ′. (7)

As shown in figure 2, the localization of spin density in the
soliton lattice state manifests itself in the plateau features of
the function SI (θ). For the sinusoidally modulated state, the
plateaus disappear due to the delocalization of spins.

2.3. Deformed soliton

Here we introduce Q to denote the number of spins per
soliton/anti-soliton. In the previous subsections, we focused
on the state with only one spin (Q = 1) per soliton. Now
we study the case for Q � 2, which we call the deformed

4 The soliton lattice pattern of pairing parameters can be described by the
Jacobi elliptic function as done in [19], but we do not include that expression
for the sake of simplicity.

Figure 2. Spin distribution in the soliton lattice state for the system
with spin imbalance 6 (a) and 14 (b). Solid lines: local spin
distribution; dashed lines: integrated spin distribution. The inset of
(b) shows a zoomed figure around a plateau.

Figure 3. Pairing parameter in a deformed soliton with Q = 3 (solid
lines) and an ideal soliton with Q = 1 (dashed lines). The upper
(lower) panel corresponds to the strong (weak) pairing interaction g.

soliton state. Firstly, let us consider the case for odd Q. The
order parameter of a deformed soliton state for Q = 3 is
plotted in figure 3 (solid lines), which corresponds to six excess
spins in total. Note that these six spins can also be stored in
three ideal soliton–anti-soliton pairs (dashed lines). Hence,
we need to compare their energies numerically. It turns out
that the deformed soliton is energetically favorable for strong
interaction, while the ideal soliton state is preferable for weak
interaction. Note that the deformed soliton found in this article
has Q nodes in a narrow region. In fact Q spins can also be
accommodated by a special soliton with only one node, which
is described by�0 tanh(x/ξ)with�0ξ = (Q+1)/2 (see [30]);
however one can show that this solution is not energetically
favored by comparing its energy and that of the corresponding
well separated multi-soliton state.

In figure 3, the upper panel corresponds to a strong
interaction case where the three spins are squeezed in a very
narrow region with width comparable to that of an ideal soliton
ξ . The total width is then estimated to be around 2ξ , which
is much smaller than the width 6ξ for the ideal soliton state.
Thus, one can reasonably believe that the deformed soliton
state has lower energy. If the interaction strength g becomes
weaker, as shown in the lower panel of figure 3, the deformed
soliton with Q = 3 will inflate and its pattern gets close to three
ideal solitons. When g becomes weak enough, the deformed
soliton cannot be stable, and is transmuted into an ideal soliton
lattice state. The pairing order parameter shown in figure 3 can
be perfectly fitted with the function �̃0[tanh(cos(θ−θ0)/ξ̃0)−
tanh(cos(θ)/ξ̃0 + tanh(cos(θ + θ0)/ξ̃0] with three parameters
�̃0, ξ̃0 and θ̃0.
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Figure 4. Average energy per spin ε(n) in equation (8) as a function
of spin imbalance n. The dashed line is the first critical magnetic
field h1.

Note that the order parameter has a sign change (−1)Q

after crossing Q ideal solitons and anti-solitons. Therefore, if
Q is odd, a deformed soliton can be continuously transmuted
into Q ideal solitons, but this is not true for even Q due to
the mismatched boundary condition of �(x). In addition, the
energy of a deformed soliton with even Q is not energetically
favorable in our numerical calculations. Therefore, we do not
need to consider the case for even Q.

2.4. Effect of a magnetic field

So far we have only considered the system with fixed particle
number, and have not included the magnetic field in our
analysis. Since the total spin is a good quantum number, the
effect of magnetic field can be easily estimated by simply
adding Zeeman energy −μBh(N↑ − N↓). Obviously, the state
with more excess spins gains magnetic energy; however, it
is at the cost of the deformation of pairing gap which loses
the condensation energy. Therefore, the ground state should
correspond to an optimized value of spin imbalance.

Let n = (N↑ − N↓)/2 be the spin imbalance, and
the corresponding ground state energy be denoted by E(n).
The energy of the BCS state without spin imbalance is thus
E(0). Given an external magnetic field h, we then need to
find the lowest free energy for all possible n s, i.e. minimize
E(n) − 2nμBh with respect to n, which leads to an optimal
spin imbalance nc.

To this end we define the energy cost per spin as

ε(n) ≡ [E(n)− E(0)]/(2n), (8)

which can also be regarded as the energy cost for creating
one soliton. The numerical data for ε(n) are plotted in
figure 4. As n increases, the adjacent kinks become closer,
which enhances the hopping amplitude of spins between kinks
and consequently favors the kinetic energy of spin transfer.
However, at the same time, the pairing gap gets smaller, which
reduces the condensation energy. Thus the interplay between
these two mechanisms leads to the nontrivial pattern of ε(n) in
figure 4.

There is a critical value h1 of the magnetic field below
which the magnetic energy cannot support an ideal soliton, and
the system remains in the uniform state. When h > h1, the
sinusoidally varying state with modulation frequency nc will
become energetically favorable. nc can be determined by the

minimum of 2nε(n) − 2nμBh; alternatively, the optimal spin
imbalance nc should satisfy

∂(2n(ε(n)− μBh))

∂n

∣∣∣∣
n=nc

= 0. (9)

After a little algebraic analysis of equation (9), one can see
that nc increases as h increases. The first nc is determined by
ε(nc) = μBh1 which is far from zero as shown in figure 4 and
corresponds to a sinusoidally modulated state.

3. Imbalanced superfluid state in annular disk

In this section we present our numerical results for an
imbalanced superfluid state in narrow annular disk with inner
radius R1 and outer radius R2. The radial width R2 − R1 is
small enough to avoid the modulation of order parameter along
the radial direction. In the numerical calculation, we use the
ratio ρ ≡ (R2 − R1)/R1 to characterize the geometry of an
annular disk. Since g has the dimension of [energy] · [length]2,
a dimensionless quantity g̃ ≡ g/(π(R2

2 − R2
1)μ) is introduced

to represent the interaction strength. The BdG equation is
solved in momentum space. Most of the results in this section
are based upon the diagonalization of a Hamiltonian in a
Hilbert space with dimensionality 3500 and 11 radial modes
involved.

3.1. Fixing particle number N↑ and N↓

3.1.1. An ideal domain wall. For small spin imbalance, one
should get domain walls as an analog of solitons in the 1D
case, and the excess spins are attached to the domain walls.
It is natural to ask what is the optimal number (Q) of spins
per domain wall? To answer this question, we first consider
an ideal geometry, i.e. a narrow strip with periodic boundary
conditions in both x and y directions, but with length Lx �
L y .

This simplified model reads

Ĥ =
∫

dx dy

[
ψ̂†
α

(
�̂p2

2m
− μα

)
ψ̂α

+ �(x, y)ψ̂†
↑ψ̂

†
↓ +�∗(x, y)ψ̂↓ψ̂↑ − |�(x, y)|2

g

]

�(x, y) = g
〈
ψ̂↓ψ̂↑

〉
. (10)

The ideal domain wall pattern of �(x, y) is independent of
y, and has the form �(x, y) = �0 tanh(x/ξ0), which implies
that the pairing momenta in the y direction are always q
and −q . The Hamiltonian in equation (10) can be divided
into many 1D branches with respect to the discrete momenta
q = (2π/L y)× integer in the y direction:

Ĥq ∼
∫

dx

[
ψ̂

†
q,↑(x)

(
p̂2

x

2m
− μq↑

)
ψ̂q,↑(x)

+ ψ̂
†
−q,↓(x)

(
p̂2

x

2m
− μ−q↓

)
ψ̂−q,↓(x)

+ �ψ̂
†
q,↑(x)ψ̂

†
−q,↓(x)+�∗ψ̂−q,↓(x)ψ̂q,↑(x)

]
. (11)
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Figure 5. Angle dependence of the pairing order parameter at radius
(R1 + R2)/2: (a) domain wall lattice state with total spin 28;
(b) sinusoidally varying LO state with total spin 70. The optimal
filling per domain wall is Q = 7. The system parameter ρ = 0.4.

Figure 6. Spin distribution in the domain wall lattice state with spin
imbalance 28 (upper panel) and in the sinusoidally varying state with
spin imbalance 70 (lower panel). Dashed lines, integrated spin
distribution SI (θ); solid lines, local spin distribution SL(θ). The
system parameters are the same as in figure 5.

Note that all 1D branches contribute to �(x), and the q-
dependent chemical potential reads μqα = μα − (h̄q)2/(2m),
which are determined by the particle numbers Nα . Each q-
mode with μq > 0 can accommodate one spin per soliton.
Therefore, we can estimate the optimal spin filling Q of
each ideal domain wall to be the number of q-modes buried
under the FS. The optimal filling for the annular disk with
open boundary conditions in the radial direction can also be
estimated similarly by counting the number of energy modes
under the FS.

Similar to the 1D ring, one expects a crossover from an
ideal domain wall like LO state to the sinusoidally varying LO
state with increasing spin imbalance in the weak interaction
case. Since �(r, θ) now depends on r , we plot the angle
dependence of �(r, θ) at radius r = (R1 + R2)/2 in figure 5.
The full spatial dependence of�(r, θ) is plotted in 2D contours
in figure 7, where one can find that its radial dependence is
nearly uniform. The spin density s(r, θ) is also a function of
r and θ . By integrating s(r, θ) over r , we can define angle
dependent local spin distribution SL (θ) and angle dependent
integrated spin distribution SI (θ) as follows:

SL (θ) =
∫ R2

R1

r drs(r, θ)

SI (θ) =
∫ θ

0
SL (θ) dθ ′.

(12)

Figure 7. Contour plot of the order parameter. The excess spin
equals 28 and the optimal filling in this case is Q = 7, hence four
pairs of domain walls are needed to store these excess spins. The
system parameters are the same as in figure 5.

Figure 8. Deformed domain wall ((a) and (b)) and phase separation
((c) and (d)) solutions. We plot the order parameter in (a) and (c),
and spin distribution in (b) and (d). The spin imbalance is 21 for (a)
and (b) and 77 for (c) and (d). The optimal spin filling Q = 7. The
interaction strength is g̃ ∼ 6.9 × 10−4.

SL and SI are plotted as functions of θ in figure 6, which shows
clearly that the spin distributions are localized in the domain
wall state and delocalized in the sinusoidally varying LO state.

3.1.2. Deformed domain wall and phase separation. As in
the 1D ring, we also encounter the deformed domain wall state,
for which there can be more spins than the optimal filling Q
squeezed in one domain wall. These deformed domain wall
states are stabilized by the strong pairing interaction. We plot
the order parameter�(θ, r) and local spin distribution SL (θ) in
figure 8, which shows that when the spin number exceeds the
optimal filling, instead of creating more ideal domain walls,
the spin polarized regions are simply enlarged. Note that in
the polarized region there is still a small pairing oscillation
like a mini sinusoidally varying LO state in order to further
lower the potential energy. These deformed domain wall
states (see figure 8(c)) are then considered as a kind of phase
separation state, where the polarized normal state with small
fluctuating order parameter is separated with the fully pairing
phase without spin imbalance.

3.1.3. Quasiparticle density of states. We compute the
quasiparticle density of states (DOS) in this section which
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Figure 9. Quasiparticle density of states for different ground states.
The Zeeman energy is not included in this figure. The red solid line
is for the uniform BCS state, the green long dashed line and the blue
short dashed line are for the domain wall lattice states, the dotted
pink line is for the sinusoidally modulated LO state, and the cyan
dot-dashed line corresponds to the phase separation state.

can describe the low energy excitations of various ground
states. In our calculation the Zeeman energy is not included,
which corresponds to the situation with fixed particle numbers.
We find that for the domain wall lattice state there is a zero
energy peak in the quasiparticle DOS. As the spin imbalance is
increasing, the number of domain walls grows and it results in
enhancement of the zero energy peak. These zero modes can
also be understood from the aspect of Andreev reflection [32],
since the π -phase difference between two superfluids permits
an Andreev bound state located at the domain walls. In the
phase separation case, the system mimics a superconductor–
normal metal–superconductor junction. By increasing the
width of the normal metal region, more Andreev resonance
states enter into the gap with nonzero energy. These energy
levels then distribute evenly in the gap, which forms a flat
quasiparticle DOS in the superconducting gap.

The above theoretical analysis is in good agreement with
the numerical results presented in figure 9. The DOS of
the BCS state is zero in the gap. When increasing the spin
imbalance in the ideal domain wall lattice state, the peak of
the DOS centered around zero becomes higher, which means
more domain walls are created, whereas in the case of phase
separation the DOS in the gap is quite flat due to the presence
of polarized normal state.

3.2. Fixing chemical potentials μ↑ and μ↓

In this subsection, we show the numerical results in the grand
canonical ensemble with fixed chemical potentials. For a weak
magnetic field (2μBh = μ↑ − μ↓), the Zeeman energy is
not enough to break the s-wave Cooper pairs, so the system
retains the uniform BCS state. Until the magnetic field h
exceeds its first critical value h1, the sinusoidally varying LO
state emerges. As the magnetic field is further increased, the
modulation frequency of the order parameter becomes larger
while its magnitude is reduced, until the system enters into the
normal state at the second critical magnetic field h2. We plot
modulation frequency as a function of h in figure 10, where one
can find plateaus since there should be integral pairs of domain
walls in a ring geometry.

The phase separation (deformed domain wall) state cannot
be a ground state in the homogeneous magnetic field, except at

Figure 10. Frequency of pairing modulation as a function of
magnetic field. We set ρ = 0.2, and g̃ = 5 × 10−4. μB is the Bohr
magneton, and the g-factor of an electron is taken as 2.

the critical value h1 of magnetic field. Furthermore, unlike the
case of fixed particle number, there is no continuous crossover
from the domain wall state to the sinusoidally varying state.
The onset frequency at the critical magnetic field h1 is finite
and large enough to form a sinusoidally varying LO state. The
reason is that, to sustain a single domain wall, its magnetic
energy gain must fully compensate the energy loss due to the
deformation of the pairing gap. In such a case there can be
more domain walls. However, the overlap of domain walls
inevitably suppresses the pairing gap, which causes loss of
the condensate energy (see section 2.4). At the balance point
of these two processes, a sinusoidally varying state appears
accompanied with delocalized spins.

4. Conclusion

We have investigated the imbalanced superfluid state in annular
disks and 1D rings by solving the BdG equation in momentum
space at zero temperature. A key issue with an imbalanced
superfluid is how to accommodate the excess spins by adjusting
the pairing gap �(�r). There are several possibilities, e.g. the
LO state with periodically oscillated order parameter and the
phase separation state. We show that these states are stable
under different conditions.

Firstly, we have studied the case with fixed fermion
numbers, which may be relevant to cold atom systems. For low
spin imbalance (still larger than the optimal spin filling Q per
domain wall), the solitons in 1D and domain walls in 2D are
the ground states. The number of spins localized at each soliton
or domain wall is quantized. With increasing spin imbalance,
more and more domain walls (solitons) occur and overlap
with each other, and the sinusoidally varying state emerges
with delocalized spins. These two states are distinguished
in this paper due to their different spin distributions. There
should be a crossover between them if one tunes the spin
imbalance continuously. The above argument is valid for
weak interactions, whereas for strong interactions the phase
separation is the possible ground state, in which only the area
of the normal polarized state varies with the spin imbalance.
This may serve as a criterion to distinguish the phase separation
state and the periodically oscillating LO state.

Secondly, we have addressed the case of fixing the
chemical potential μ and magnetic field h, which may be
relevant to heavy fermion superconductors interacting with an
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external magnetic field via the Zeeman term. There are two
critical magnetic fields h1 and h2, which correspond to the
transition from a uniform BCS state to the sinusoidally varying
state, and from the sinusoidally varying state to the normal
state, respectively. It is stressed that the modulation frequency
of the pairing gap at h1 is quite large and the spin is delocalized,
which characterizes a typical sinusoidally varying state.
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